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Abstract

We present a phase-based potential ordering that is an extension of the Cascade ordering introduced by Appleyard and
Cheshire [John R. Appleyard, Ian M. Cheshire, The cascade method for accelerated convergence in implicit simulators, in:
European Petroleum Conference, 1982, pp. 113–122]. The proposed ordering is valid for both two-phase and three-phase
flow, and it can handle countercurrent flow due to gravity and/or capillarity. We show how this ordering can be used to
reduce the nonlinear algebraic system that arises from the fully-implicit method (FIM) into one with only pressure depen-
dence. The potential-based reduced Newton algorithm is then obtained by applying Newton’s method to this reduced-
order system. Numerical evidence shows that our potential-based reduced Newton solver is able to converge for time steps
that are much larger than what the standard Newton’s method can handle. In addition, whenever standard Newton con-
verges, so does the reduced Newton algorithm, and the number of global nonlinear iterations required for convergence is
significantly reduced compared with the standard Newton’s method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The simulation of immiscible fluid displacements in underground porous media remains an important and
challenging problem in reservoir engineering. First, the governing PDEs exhibit a mixed hyperbolic–parabolic
character due to the coupling between the global flow and the local transport of the different phases. In addi-
tion, rock properties such as porosity and fluid permeability are highly heterogeneous, leading to poor numer-
ical conditioning of the resulting linear systems. Finally, fluid velocities vary greatly across the domain, with
near-well regions experiencing fast flows and some far away regions experiencing almost no flow at all. These
characteristics impose severe constraints on the numerical methods used in practical reservoir simulation.
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The simplest and most widely used model in reservoir simulation is the standard black oil model [2], which
incorporates various simplifying assumptions on fluid properties. (A more detailed description will be pre-
sented in Section 2.) Despite the increasing use of compositional models, black oil simulation still accounts
for the vast majority of simulations in industry. Thus, this paper will concentrate on improving the efficiency
and robustness of black oil simulation.

Several time discretizations are commonly used for solving the black oil equations. The IMPES method [6]
makes the saturation variables explicit in time, whereas the pressure variables are implicit in time. IMPES has
a stability limit that is inversely proportional to the largest fluid velocity in the reservoir, and this limit is often
too restrictive in practice. The Sequential Implicit method (cf. [2]) attempts to remedy the problem by first
solving for pressure using coefficients at the old time step, then computing a new total velocity field based
on the new pressure, and finally solving the transport problem implicitly based on the updated total velocity
field. This amounts to decoupling the flow and transport problems and solving them separately. In the absence
of capillarity, the sequential implicit method does not suffer from stability problems like IMPES. However,
since the flow and transport problems are actually coupled, decoupling them introduces splitting errors
(and hence mass-balance errors) that are proportional to the length of the time step. Finally, the fully-implicit
method (FIM) makes both the saturation and pressure variables implicit in time. This discretization can be
shown to be unconditionally stable [2], and is the preferred discretization in most practical applications.
Unfortunately, FIM requires the solution of a large, coupled nonlinear system of algebraic equations, so
an efficient simulator must be able to solve such systems quickly and reliably. The goal of this paper is to
use reordering techniques and a reduced-order Newton’s method to speed up the solution of such nonlinear
systems of equations.

The rest of the paper is organized as follows. In Section 2, we describe the black oil model and the
spatial discretization used. Section 3 describes work related to our approach. In Section 4 we present in
detail an ordering scheme that forms the basis of our solution algorithm. Section 5 shows how to use
this ordering to obtain a reduced-order Newton method, which can be used to solve the global problem.
Finally, in Section 6 we present some numerical examples that illustrate the effectiveness of this
technique.
2. Governing equations and numerical method

2.1. Two-phase model description

Given two immiscible fluid phases w and o (water and oil), the flow of each phase is described by conser-
vation of mass (p = w, o)
oð/qpSpÞ
ot

þr � ðqpupÞ ¼ qpqp ð2:1Þ
and generalized Darcy’s law
up ¼ �
krp

lp
KrUp; ð2:2Þ
where / is the porosity of the medium, K is the absolute permeability tensor, z is the depth variable; and for
each phase p (p = o, w), qp is the density, Sp is the saturation, up is the volumetric flux vector, qp is the source
or sink term, krp = krp(Sp) is the relative permeability, lp is the phase viscosity, Up = pp � cpz is the phase po-
tential, pp is the pressure, and cp is the gravitational force.

In addition, we have the algebraic relations
So þ Sw ¼ 1 ðsaturation constraintÞ ð2:3Þ
po � pw ¼ P cowðSwÞ; ðcapillary pressure constraintÞ ð2:4Þ
which are used to eliminate So and po in (2.1) to obtain a coupled system of two nonlinear PDEs with Sw and
pw as the primary variables. This system of PDEs is supplemented with the boundary conditions
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pw ¼ pwd on Cd ð2:5Þ
qwuw � m ¼ gwn on Cn ð2:6Þ
qouo � m ¼ gon on Cn ð2:7Þ
and initial conditions
pwðx; 0Þ ¼ pw0ðxÞ; Swðx; 0Þ ¼ Sw0ðxÞ; ð2:8Þ

where the Dirichlet boundary has positive measure and m denotes the outward normal to the boundary.

2.2. Three-phase model description

For three-phase flow, we have an extra gas phase g. The conservation law for w and o remain the same as
(2.1). However, since the gas component can dissolve into the oil phase, the conservation law for the gas com-
ponent takes the form:
oðqg/SgÞ
ot

þr � ðqgugÞ
� �

þ oðqo/SoRsÞ
ot

þr � ðqouoRsÞ
� �

¼ qgqg; ð2:9Þ
where Rs = Rs(pg) is the solubility ratio. The generalized Darcy’s law (2.2) is valid for p = w, o, g. In practical
simulations, it is commonly assumed that the relative permeabilities krp have the following dependencies on
saturation:
krw ¼ krwðSwÞ; kro ¼ kroðSw; SgÞ; krg ¼ krgðSgÞ: ð2:10Þ

This parameterization is based on the assumption that water is the most wetting phase and gas the least wet-
ting phase, which is valid for most reservoirs of interest (cf. [2] for more detailed explanations).

The algebraic relations become
So þ Sw þ Sg ¼ 1 ðSaturation constraintÞ ð2:11Þ
po � pw ¼ P cowðSwÞ ðCapillary pressure constraintsÞ ð2:12Þ
pg � po ¼ P cogðSgÞ ð2:13Þ
Finally, the initial and boundary conditions (2.5)–(2.8) need to be augmented by
qgug � m ¼ ggn on Cn; ð2:14Þ
Sgðx; 0Þ ¼ Sg0ðxÞ: ð2:15Þ
2.3. Discretization and solution of linear systems

The two-phase or three-phase PDEs are discretized using a finite volume method with second-order central
differencing for pressure, harmonic averaging for the absolute permeability tensor K, and first-order upwind-
ing for saturation-dependent coefficients. (For simplicity, we assume that K is a diagonal tensor with positive
entries.) This yields a system of nonlinear algebraic equations, which we solve using Newton’s method. Each
Newton iteration requires the solution of the linear Jacobian system:
JðxðmÞÞdxðmÞ ¼ �RðmÞðxðmÞÞ; ð2:16Þ

where R(m) is the residual at the iterate x(m). (Due to the large number of vectors and matrices appearing below,
such quantities will no longer be shown in bold in the remainder of this paper.) Any direct or iterative linear
solver can be used to solve (2.16), but a particularly effective approach is to use an iterative method such as
GMRES [12] with two-stage preconditioning of the form:
M�1
1;2 ¼ M�1

1 þM�1
2 ðI � AM�1

1 Þ: ð2:17Þ
The first stage preconditioner M1 is a CPR reduction [13], which involves forming the IMPES pressure equa-
tion and solving it with an elliptic solver such as algebraic multigrid. The second stage M�1

2 typically uses a
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local preconditioner such as ILU(0). Note that the performance of ILU preconditioners is sensitive to the
ordering of variables and unknowns; such ordering effects have been considered in [7].

3. Related work

The main theme of this paper is to reorder the equations and variables in such a way that allows the sat-
uration variables to be solved one at a time. A related approach, called the Cascade method, was proposed by
Appleyard and Cheshire [1] as an acceleration scheme for the basic Newton’s method. A brief description of
the method follows.

Suppose we have an np-phase model (np = 2 or 3), in which we discretize the domain into N gridblocks. The
first step in the Cascade method is the same as the ordinary Newton’s method: namely, we linearize the npN

conservation equations and solve the npN-by-npN linear system J(x(m))dx(m) = �R(m)(x(m)) for dx(m). Next, we
apply a linear update to pressure variables po only, leaving the saturations intact for the time being. Using
this new pressure field, we update the potential for each phase, and then we order the cells from the highest
potential to the lowest. This is the order in which the Cascade sweep should be performed. Note that there is a
choice in the ordering, since the potential sequence can be different for each phase. Appleyard and Cheshire
suggest that one Cascade sweep be done for the potential sequence of each phase, although the method was
only demonstrated for a two-phase flow problem.

Each Cascade sweep requires the solution of N single-cell problems, where N is the number of cells in the
grid. For a two-phase problem, a single-cell problem has the form
foðSw; poÞ ¼
1

Dt
DMoðSw; poÞ þ FOoðSw; poÞ � FIo � qo ¼ 0

fwðSw; poÞ ¼
1

Dt
DMwðSw; poÞ þ FOwðSw; poÞ � FIw � qw ¼ 0

ð3:1Þ
where DMp is the accumulation of phase p, FOp and FIp are the outward and inward fluxes of phase p respec-
tively, and qp are the well terms. For a three-phase problem, we would have three such equations. We assume
that the inward fluxes are known and independent of the values of Sw and po at the cell, which is valid pro-
vided that all neighboring cells at a higher potential have been processed, and there is no countercurrent flow.
We now have a system of two nonlinear equations in two unknowns, which can be efficiently solved for Sw and
po. The computed Sw and FOp are retained and will be used in subsequent single-cell problems, whereas the po

are discarded. Fig. 1 outlines one step of the cascade method.
Consider a one-dimensional model problem with

� incompressible flow,
� an injection boundary condition on the left,
� a pressure boundary condition on the right, and
� no countercurrent flow (e.g. horizontal reservoir with no capillarity).
Fig. 1. One iteration of the Cascade method [1].
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It can be shown that the Cascade method converges to the solution in two iterations for this problem (see
[9] for a proof). However, this ceases to be true in the presence of countercurrent flow or in multiple dimen-
sions. Also, the formulation may break down if the phase potential chosen to order the cells contains local
minima; in this case, the cell whose potential is at a local minimum will lack an outward flux term FOp, so
it would be impossible to satisfy mass balance for both phases no matter what Sw and po is. This is an impor-
tant drawback because in practical applications it is usually impossible to guarantee the lack of local minima
in the pressure field when the solution has not converged, especially when the initial guess is poor. In the next
two sections we will show how a potential-based formulation can be used in the multidimensional case to han-
dle gravity and capillarity systematically.

4. Potential-based ordering

In this section, we present an ordering of equations and unknowns that allows us to solve for saturation
one unknown at a time, even in multiple dimensions and/or in the presence of gravity and countercurrent
flow. First, we will explain how to construct this ordering in the absence of countercurrent flow; in this
case the ordering will coincide with the Appleyard and Cheshire Cascade ordering. We will then extend
the ordering to treat countercurrent flow due to gravity, and finally we will show how to deal with
capillarity.

4.1. Cocurrent flow

Consider the two-phase model outlined in Section 2. In the absence of gravity and capillary forces, all
phases will be flowing in the same direction, which is given by the negative pressure gradient �$p (i.e. from
high to low pressure). Thus, in the finite volume discretization, the flux term between cells i and l,
F il ¼
K � krpðSlÞ

lp

pl�pi
Dx ; pl P pi

K � krpðSiÞ
lp

pl�pi
Dx ; pl 6 pi

8<
: ð4:1Þ
depends only on the saturation of the upstream cell. Suppose we reorder the cells such that they appear in
decreasing order of pressure, i.e. pi P pj whenever i < j. Then for all j, the component conservation equations
for cell j depend only on saturations Si with i 6 j. Thus, we can rearrange the system of nonlinear equations to
the form:
fc1ðS1; p1; . . . ; pN Þ ¼ 0

fc2ðS1; S2; p1; . . . ; pN Þ ¼ 0

..

.

fcN ðS1; S2; . . . ; SN ; p1; . . . ; pN Þ ¼ 0

ð4:2Þ
where c = o, w are the oil and water components respectively. Notice how the saturation part of the
equations becomes ‘‘triangular’’. Thus, if we have the exact pressure solution p1, . . . , pN, we can
perform a ‘‘forward substitution’’ and solve a series of single-variable nonlinear equations to obtain the
saturations S1, . . . , SN. We remark that the triangularity carries over to the Jacobian matrix, which
now has the form
Sw p

J ¼
J ww J wp

J ow J op

� �
water equation

oil equation

ð4:3Þ
where Jww is lower triangular.
In the three-phase case, we have two saturation variables per cell, which we can choose as Sw and So

without loss of generality. Since the black oil model assumes that krw depends solely on Sw, the above con-
struction can be used to order the water equations. Now kro depends on both Sw and So, but we can maintain
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triangularity by writing all the water equations first before writing the oil and gas equations. The nonlinear
system then looks like
fw1ðSw1; p1; . . . ; pN Þ ¼ 0

fw2ðSw1; Sw2; p1; . . . ; pN Þ ¼ 0

..

.

fwN ðSw1; . . . ; SwN ; p1; . . . ; pN Þ ¼ 0

fo1ðSw1; . . . ; SwN ; So1; p1; . . . ; pN Þ ¼ 0

..

.

foN ðSw1; . . . ; SwN ; So1; . . . ; SoN ; p1; . . . ; pN Þ ¼ 0

and f giðSw1; . . . ; SwN ; So1; . . . ; SoN ; p1; . . . ; pN Þ ¼ 0; i ¼ 1; . . . ;N :

ð4:4Þ
In this case the corresponding Jacobian would have the form
w o

ww wp

ow oo op

gw go gp

ð4:5Þ
with Jww and Joo lower triangular, which implies the entire upper-left block is lower triangular. Note that Jow

will also be lower triangular, since all phases have the same upstream direction. However, this fact is not
needed to justify solving for Sw and So using forward substitution.
4.2. Countercurrent flow due to gravity

In the presence of gravity, buoyancy forces can cause different phases to flow in opposite directions. The
upstream direction for each phase p is determined by the sign of (Up,i � Up,l), where
Up;i ¼ pi � cpzi ð4:6Þ
is the phase potential at cell i, zi is the depth of the cell, and cp is the specific gravity of phase p. Despite possible
differences in upstream directions, we are interested in maintaining the triangular forms shown in (4.2) and
(4.4) (and equivalently (4.3) and (4.5)). For two-phase flow, one can simply use Uw for ordering, since one only
needs Jww (and not Jow) to be triangular. For three-phase flow, we need both Jww and Joo to be lower trian-
gular. Clearly, no single cell ordering can accomplish this; we will need to order the water and oil phases sep-
arately. The trick is to exploit the relative permeability dependencies (2.10) in such a way that triangularity is
preserved.

Unlike the cocurrent flow case, we can no longer align variable/equation ordering with cell ordering. Thus,
in the sequel, subscripts (such as k in Up,k) always denote the value of the scalar field (in this case, the potential
of phase p) at cell k in the natural ordering, since we will concentrate on ordering the equations and unknowns,
rather than the cells themselves. Let r1, . . . ,rN and s1, . . . ,sN be permutations such that
Uw;ri P Uw;rj whenever i < j; ð4:7Þ
Uo;si P Uo;sj whenever i < j: ð4:8Þ
In other words, if cell k is such that Uw,k > Uw,l for any other l, then r1 :¼ k. Suppose we order all the water
equations and variables first using the r ordering, and then order the oil equations and variables using the s
ordering. The nonlinear system then looks like
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fw;r1
ðSw;r1

; p1; . . . ; pN Þ ¼ 0

fw;r2
ðSw;r1

; Sw;r2
; p1; . . . ; pN Þ ¼ 0

..

.

fw;rN ðSw;r1
; . . . ; Sw;rN ; p1; . . . ; pN Þ ¼ 0

fo;s1
ðSw;r1

; . . . ; Sw;rN ; So;s1
; p1; . . . ; pN Þ ¼ 0

..

.

fo;sN ðSw;r1
; . . . ; Sw;rN ; So;s1

; . . . ; So;sN ; p1; . . . ; pN Þ ¼ 0

and f giðSw;r1
; . . . ; Sw;rN ; So;s1

; . . . ; So;sN ; p1; . . . ; pN Þ ¼ 0; i ¼ 1; . . . ;N :

ð4:9Þ
Now consider the pattern of the corresponding Jacobian matrix. Clearly, Jww is still lower triangular because
of (4.7), and Joo is lower triangular because of (4.8). The only effect of countercurrent flow is that Jow will no
longer be lower triangular, because the Sw are not arranged in decreasing Uo order. However, as long as the
upper-left block in (4.5) is lower triangular, we can use forward substitution to solve for Sw and So once the
pressures are known.

4.3. Capillarity

So far, in the absence of capillary effects, the saturation dependence in each equation is purely upstream;
thus, for a given phase, saturations downstream from cell i do not appear in equation i. In contrast, equation i

involves phase pressures from all neighboring cells, be they upstream or downstream from cell i. Since we can
only choose one phase pressure as a primary variable, the other phase pressures must be expressed as
pq ¼ pp þ P cpqðSÞ; ð4:10Þ
where pp is the primary pressure and pq is the pressure of another phase. Thus, when capillarity is present, we
must choose our primary variables carefully to avoid introducing downstream dependence on saturation that
cannot be removed by simply the reordering equations and unknowns. Choosing pw as the primary pressure
variable will allow us to maintain the triangularity in the upper-left block of (4.5). Observe that choosing pg

will cause the water equations to depend on So, since pw = pg � Pcog(Sg) � Pcow(Sw) and Sg = 1 � Sw � So.
This would completely destroy the triangularity of the block. If we instead choose po, then there will be no
So dependence, but there will be both upstream and downstream dependence on Sw due to pw = po � P-

cow(Sw), which is undesirable. Thus, the only choice that leaves the water equation intact is pw.
It remains to check that Joo is still lower triangular when pw is used. We have
po ¼ pw þ P cowðSwÞ; ð4:11Þ

which means we will introduce downstream dependence on Sw, but not on So. Hence, the Jow block will now
contain downstream terms, but the Joo block remains unchanged. Thus, the upper-left block remains triangu-
lar, as before. The same analysis carries over in the nonlinear equation (4.9). Table 1 summarizes the ordering
strategies for black oil models with different numbers of phases. Note that the gas equations, whenever they
are present, are always the last to appear in the system. This is because the gas component exists in both the oil
and gas phases, so no ordering can produce the required triangular forms when countercurrent flow is present.
1
ng strategies for different black oil models

Component ordering Cell ordering Primary pressure

Water Oil

hase, oil–water Water/oil Uw * pw

hase, gas–water Water/gas Uw * pw

hase, oil–gas Oil/gas * Uo po

phase Water/oil/gas Uw Uo pw
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4.4. Remarks on implementation

In order to produce cell orderings that satisfy (4.7) and (4.8), it is not necessary to sort the potentials in
decreasing order. Instead, consider the directed graph G = (V, E) where the nodes V are the cells and the edges
E are such that (i, j) is an edge whenever i and j are neighbors and Ui > Uj or Ui = Uj and i > j. Then a topolog-
ical ordering of this graph will yield an ordering consistent with (4.7) or (4.8) depending on the potential U used.
The running time of this operation is O(N), which is asymptotically faster than sorting (O(NlogN)).

We also remark that in most simulations, the flow directions do not change very often, so it may not be
necessary to compute this ordering at every time step. For instance, we can compute the potential ordering
only at the beginning of a time step. At each subsequent Newton iteration, we can simply verify the validity
of the ordering, and only recompute it when the submatrix ceases to be triangular.

5. A reduced-order Newton method

In this section, we use the potential-based ordering introduced in Section 4 to reformulate the mass-balance
equations into a system of smaller size that involves pressure variables only. The Implicit Function Theorem
(cf. [11]) plays a central role in the formulation. We first describe the algorithm that arises when Newton’s
method is applied to the reduced system.

5.1. Algorithm description

For notational convenience, we rewrite (4.9) by splitting the equations into two blocks: the first block
Fs = 0 contains all the water and oil equations, and the second block Fg = 0 contains all the gas equations.
Similarly, we denote the vector of all saturation variables (Swi and Sgi, i = 1, . . . ,N) by S, and the vector of
pressure variables by p. Then (4.9) becomes
F sðS; pÞ ¼ 0

F gðS; pÞ ¼ 0;

�
ð5:1Þ
and the corresponding Jacobian J in (4.5) becomes
J ¼
J ss J sp

J gs J gp

� �
; ð5:2Þ
where
F s ¼ ½fw1; . . . ; fwN ; fo1; . . . ; foN �T;
F g ¼ ½fg1; . . . ; fgN �T;
S ¼ ½Sw1; . . . ; SwN ; So1; . . . ; SoN �T;
p ¼ ½pw1; . . . ; pwN �

T
;

and
J ss ¼ oF s=oS; J sp ¼ oF s=op; Jgs ¼ oF g=oS; J gp ¼ oF g=op:
It can be shown that Jss is non-singular as long as the monotonicity condition dkrp/dSp P 0 is valid for
p = o,w (see Appendix A for the proof). For krw = krw(Sw) (which is usually obtained from experimental
data), monotonicity is almost always satisfied, but the situation is less clear for kro = kro(Sw, Sg), since the lat-
ter is usually obtained by interpolating data from oil–water and oil–gas experiments. Certain methods of inter-
polation, such as Stone I and Stone II, yield monotonic kro under mild conditions (see Appendix B), but this is
not always the case for other methods (e.g. the segregation model). In this work it is assumed that kro is a
monotonically increasing function of So when Sw is fixed, which would ensure the invertibility of Jss..

Consequently, since Fs(S, p) has a triangular structure with respect to saturation, one can solve for S one
unknown at a time if p is given. In addition, the implicit function theorem guarantees that if Fs(S0, p0) = 0 and
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oFs/oS is non-singular at (S0, p0), then there exists a neighborhood U of p0 and a unique differentiable function
S = S(p) such that S(p0) = S0 and Fs(S(p), p) = 0 for all p 2 U. In other words, we can use Fs as a constraint to
define saturation as a function of pressure, and substitute it into the remaining equations Fg. Thus, we obtain
F gðSðpÞ; pÞ ¼ 0; ð5:3Þ

which we need to solve for the pressure p. If we use Newton’s method to solve (5.3), the Jacobian matrix
becomes
J reduced ¼
oF g

oS
oS
op
þ oF g

op
ð5:4Þ

¼ J gs

oS
op
þ J gp: ð5:5Þ
Now oS/op is given by the implicit function theorem: Fs(S(p),p) ” 0 implies
oF s

oS
oS
op
þ oF s

op
¼ 0; ð5:6Þ
which gives
oS
op
¼ � oF s

oS

� ��1
oF s

op
; ð5:7Þ
which can be written as oS=op ¼ �J�1
ss J sp. Thus, the reduced Jacobian matrix is
J reduced ¼ J gp � J gsJ�1
ss J sp; ð5:8Þ
which is precisely the Schur complement of (5.2) with respect to pressure. Fig. 2 summarizes the algorithm
used to solve the reduced system. Notice that the only difference between the algorithm in Fig. 2 and Newton’s
method applied to the full problem is the way we compute Sk+1. In the full method, we set Sk+1 = Sk + dSk; in
the reduced method, Sk+1 is updated nonlinearly by solving the constraint equations F(Sk+1,pk+1) = 0, exploit-
ing the special triangular structure of Jss. Also note that since this is just the usual Newton’s method applied to
a reduced problem, convergence is locally quadratic.

5.2. Sequential updating of the saturations

The algorithm in Fig. 2 requires the solution of F sðSkþ1; pkþ1
w Þ ¼ 0 for Sk+1 at every step. Using the potential

ordering in Section 4, we can triangularize the constraint equations to obtain the system (4.9). Thus, given the
pressure values p1, . . . ,pN, we first solve fw1 = 0 for Sw1. Then, using this Sw1 we can now solve fw2 = 0 for Sw2,
and so on until we obtain all saturation values. Thus, solving F sðSkþ1; pkþ1

w Þ ¼ 0 reduces to solving (np � 1)N
nonlinear scalar equations one at a time (where np is the number of fluid phases). A wide variety of reliable
univariate solvers are available to deal with the single-cell problems. One such choice is the van Wijngaar-
den–Dekker–Brent Method [3], which combines bisection with inverse quadratic interpolation to obtain
superlinear convergence. This is a derivative-free algorithm, which means only function values are required,
Fig. 2. Algorithm for solving the reduced system (5.3).
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although an initial guess based on the solution of the ordinary Newton step can be used to accelerate conver-
gence. In a reasonably efficient implementation, each function evaluation should only require a few floating-
point operations. As shown in Section 6, the extra cost of the single-cell nonlinear solves is usually offset by a
reduction of the number of global Newton steps. The nonlinear updates can be performed more efficiently if
more sophisticated zero finders are used.

5.3. Solving the Schur complement system

There are two ways to solve the Schur complement system
J reduceddp ¼ �r: ð5:9Þ

The first way is to notice that one can solve the equivalent system
J ss J sp

J gs J gp

� �
dS

dp

� �
¼

0

�r

� �
: ð5:10Þ
Krylov subspace methods (such as GMRES) can be used, and effective preconditioners (such as CPR [13]) are
available. A second way is to apply the Krylov method directly to the Schur complement system. In this ap-
proach, matrix–vector multiplication by Jreduced would have the same cost as multiplication by the full matrix,
because Jss is lower triangular, so that multiplication by J�1

ss is simply a forward substitution. In terms of pre-
conditioning, one can use an induced preconditioner based on the full system by letting
M�1
reduced ¼ RM�1

fullR
T; ð5:11Þ
where M�1
full is the preconditioner for the full system, and R ¼ ½0 I � is the restriction operator to the pressure

variables. In other words, a preconditioning step for the reduced system y ¼ M�1
reducedx consists of the following

steps:

(1) Pad the vector x with zeros to form x̂ ¼ ð 0ðnp�1ÞN x Þ.
(2) Compute ŷ ¼ M�1

fullx̂.
(3) Let y be the portion of ŷ corresponding to pressure variables, i.e. retain only the last N elements of ŷ.

One advantage of applying the Krylov method to the Schur complement system rather than the full system
is that the resulting Krylov vectors are only of length N rather than length npN, where np is the number of fluid
phases. This greatly reduces storage and orthogonalization costs in methods such as GMRES, so that more
Krylov steps can be taken before restarting.

In fact, the Schur complement reduction can be used even if the nonlinear constraint equations are not
exactly satisfied. This could happen if the initial pressure guess is so poor that some of the residual constraints
in the reduced Newton cannot be satisfied. In that case we would have
J ss J sp

J gs J gp

� �
dS

dp

� �
¼ �

rs

rg

� �
ð5:12Þ
But this is equivalent to solving
J reduceddp ¼ �ðrg � J gsJ�1
ss rsÞ ð5:13Þ
which has the same form as (5.9), so we get the same computational savings as before.
To test the efficiency of the potential-based reduced Newton algorithm, we implement it inside GPRS,

which was developed by Cao [4] in 2002 as general-purpose research simulator. It is used by Stanford Univer-
sity’s SUPRI-B and SUPRI-HW research groups, as well as other research groups and companies for their in-
house research. By implementing our algorithm in GPRS we can guarantee that all the property calculations
and convergence checks are identical for both the standard and reduced Newton methods. We can also ensure
our reference point is indeed the basic Newton method, rather than a version adorned with various heuristics.
Consequently, all foregoing comparisons between the standard and reduced Newton methods are generated
by GPRS.
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6. Numerical examples

6.1. 1D example with gravity

To demonstrate that the potential-based reduced Newton algorithm does indeed work in the presence of
countercurrent flow, we first test it on a simple pseudo-1D example. The reservoir is discretized using
10 · 1 · 100 cells in the x, y and z directions, respectively, with Dx = 10 ft, Dy = 50 ft and Dz = 4 ft. A uniform
porosity (/ = 0.3) and permeability (kx = ky = kz = 758 md) are used. Water is injected across the top layer at
a rate of 213.6 bbl/day (0.002 pore volumes per day) and a production well is completed across the bottom
layer and operates at a BHP of 500 psi. The densities of water and oil at standard conditions are 64 lb/cu.ft.
and 49 lb/cu.ft., respectively, and the viscosities are lo = 1.0 cp, lw = 0.3 cp. The fractional flow curve for this
problem is shown in Fig. 3. We see that flow is cocurrent for 0 6 Sw 6 0.38, and countercurrent for
0.38 6 Sw 6 1. We test our algorithm for initial water saturations Swi = 0.0, 0.1, . . . , 0.9. In each case, the sim-
ulation steps through T = 1, 3, 7, 15, 30, 45, 60 days (1 day = 0.002 pore volumes), and afterwards the time-
step size is fixed at DT = 20 days until T = 300 days is reached, for a total of 21 steps. Table 2 shows the
results for the standard and reduced Newton algorithms. We see that reduced Newton does not need to cut
any time steps to achieve convergence, whereas Standard Newton must cut the time step multiple times in four
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Fig. 3. Fractional flow fw for the 1D gravity example.

Table 2
Convergence history for 1D flood with different initial water saturations

Swi Standard Reduced

Timesteps Newtons Cuts Timesteps Newtons Cuts

0.0 26 140 5 21 61 0
0.1 21 59 0 21 58 0
0.2 21 59 0 21 58 0
0.3 21 50 0 21 49 0
0.4 21 51 0 21 58 0
0.5 21 67 0 21 81 0
0.6 22 88 2 21 85 0
0.7 24 96 6 21 90 0
0.8 23 85 3 21 84 0
0.9 21 51 0 21 65 0

For both methods: Timesteps, total number of timesteps taken to simulate up to 300 days; Newtons, number of Newton iterations
(excluding iterations wasted due to time-step cuts); Cuts, number of times the algorithm must cut the time-step size by half due to non-
convergence.
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cases (Sw = 0.0, 0.6, 0.7, 0.8). Time-step cuts are very expensive, since it means that we must throw away the
results of all previous iterations and start over. Moreover, the size of the next step following a time-step cut is
usually set to the last successfully integrated Dt, i.e. the one reduced by the time-step cut. This can lead to a
significantly smaller average time-step size for a given simulation. Thus, a more stable algorithm that avoids
time-step cuts can significantly outperform one that cuts time steps frequently, especially if their convergence
rates are otherwise comparable. Table 2 shows that when neither algorithm requires time-step cuts, standard
Newton converges more quickly some of the time (Sw = 0.4, 0.5, 0.9), whereas reduced Newton is quicker at
other times (Sw = 0.1, 0.2, 0.3, 0.6). Nonetheless, the differences in the average iteration count is less than 0.67
iterations per time step in all cases. So the convergence rates for both algorithms are comparable when no
time-step cuts are needed. As we will see in later examples, the enhanced stability of reduced Newton does
translate into gains in actual running time for larger problems. The primary goal of this example is to dem-
onstrate the robustness of reduced Newton, even in the presence of strong countercurrent flow. This property
is essential if the algorithm is to be used in heterogeneous reservoirs with complicated permeability/porosity
fields, especially since countercurrent flow due to gravity can be important in regions where the total velocity is
small.

6.2. Heterogeneous example with gravity

To demonstrate the effectiveness of reduced Newton on a large, complex heterogeneous reservoir, we test it
on a water flood problem using a 2 · 2 · 2 upscaling of the SPE 10 model [5]. This gives rise to a model with
141,900 grid blocks (110 · 30 · 43). A visualization of the reservoir is shown in Fig. 4. The top 18 layers of the
reservoir represent a Tarbert formulation with highly variable permeabilities ranging from 4.8 · 10�3 to
1.2 · 103 md. The bottom 25 layers consists of an Upper Ness sequence, which is highly channelized. The
porosity is 0.3 throughout the reservoir. Water is injected at the center of the reservoir at 5000 bbl/day
(=0.0002 pore volumes per day); four production wells are located in the four corners of the reservoir, oper-
ating at a bottom hole pressure of 4000 psi. Quadratic relative permeabilities are used with a residual satura-
tion of 0.2 for both phases, and the viscosity ratio is 10. The rest of the parameters are the same as those in the
original specification. The simulation is carried out up to T = 500 days, which corresponds to 0.1 pore vol-
umes injected (PVI). For any time step, if the global nonlinear solver does not converge within 20 iterations,
the iterations are stopped and the current time step is cut in half before restarting. Table 3 shows the conver-
gence history of the standard and reduced Newton methods for an initial time step of 0.1 days. Here the time
Fig. 4. Permeability field and well configuration for the upscaled SPE10 problem[5]. The reservoir is displayed upside down so that the
channels in the bottom layers are clearly visible.



Table 3
Convergence history for the upscaled SPE 10 model with an initial time step of 0.1 days

Days Standard Reduced CFL %CC

N L N L

0.1 4 18 4 17 1.8 6.2
0.3 3 17 3 17 1.9 2.4
0.7 3 18 2 12 2.1 1.1
1.5 3 19 2 14 2.5 0.7
3.1 4 26 2 15 4.0 0.5
6.3 5 32 2 16 6.7 0.5
10 4 26 2 15 11.1 0.5
20 6 45 3 27 23.9 0.5
35 4 32 3 27 35.2 0.5
50 3 27 2 19 33.2 0.5
70 4 35 3 27 35.1 0.6
90 4 33 3 28 35.6 0.6
110 4 37 3 30 52.9 0.6
140 4 41 3 34 112.1 0.6
170 4 39 2 21 102.8 0.7
200 4 35 2 21 145.3 0.7
230 3 33 2 22 129.1 0.7
260 3 33 2 22 132.0 0.8
290 3 30 2 21 132.3 0.8
320 3 31 2 21 119.6 0.8
350 3 30 2 19 109.5 0.8
380 3 30 2 20 116.7 0.9
410 3 31 2 20 112.0 0.9
440 3 30 2 19 114.9 0.9
470 3 28 2 19 108.1 1.0
500 3 29 2 19 146.3 1.0

Total 93 785 61 542

Running time (s) 728.6 560.6

N, number of nonlinear (Newton) iterations; L, number of Linear (CPR) solves; CFL, maximum CFL number in the reservoir; %CC,
percentage of cell interfaces that experience countercurrent flow.
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stepping is gentle enough that standard Newton does not need to cut time steps in order to achieve conver-
gence. We see that reduced Newton takes fewer iterations than standard Newton to converge, and that the
running time decreases from 728.6 s to 560.6 s. Thus, the savings from reducing the number of Newton iter-
ations are more than enough to offset the cost of univariate solves.

Next we specify an initial time step of 1 day and track the number of Newton iterations required to con-
verge. Fig. 5 shows the results. We see that reduced Newton converges for the first time step in 9 iterations,
whereas Standard Newton does not converge and needs to cut the time step twice to converge with an initial
time step of 0.25 days. Beyond the first time step, reduced Newton always takes fewer iterations to converge
than its standard counterpart, and the iteration count does not exhibit the large variations that Standard New-
ton does at the beginning.

6.3. Large heterogeneous example

Since the cost of the single cell solves only scales linearly with the problem size, we expect that the savings
afforded by the potential-based reduced Newton method will become even more evident in large heteroge-
neous examples, where the computational cost is dominated by the solution of linear systems. We demonstrate
this by simulating the full SPE 10 problem (60 · 220 · 85 = 1.12 million grid blocks) and with the variable
porosity field as specified in [5]. The published relative permeabilities and fluid properties are used, except that
the formation volume factor Bo and the density qo are taken to be the same as the published Bw and qw. The
injection rate is 5000 bbl/day (0.000366 pore volumes per day). The simulation runs until T = 2000 days
(PVI = 0.732). Three time-stepping strategies are used:
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� Short time steps: T = 0.01, 0.03, 0.07, 0.15, 0.31, 0.63, 1, 3, 7, 15, 31, 63, 90, 120, 150, 180, 220, 260, 300
days. After 300 days, DT = 50 days (0.0183 pore volumes) until T = 2000 days is reached.
� Long time steps: T = 0.01, 0.31, 1, 7, 31, 90, 150, 220, 300 days. After 300 days, DT = 100 days (0.0366 pore

volumes) until T = 2000 days is reached.
� Huge time steps: T = 0.01, 0.31, 1, 7, 31, 90, 200 days. After 200 days, DT = 500 days (0.183 pore volumes)

until T = 2000 days is reached.

As before, the time step is cut in half if the global nonlinear solver does not converge within 20 iterations.
Table 4 summarizes the runs for both the standard and reduced Newton algorithms, and Fig. 6 compares the
convergence histories of standard and reduced Newton for the long time step case. We observe that reduced
Newton can easily handle the ‘‘long’’ and ‘‘huge’’ time step cases, whereas standard Newton needs to cut time
steps multiple times in order to achieve convergence. This results in a significant number of wasted linear solves
and a serious degradation in performance. In fact, we could not run standard Newton for the huge time step
case due to the large number of time step cuts; thus, taking too large a time step in standard Newton actually
makes the simulation slower, whereas the opposite is true for reduced Newton. Indeed, reduced Newton with
long or huge time steps runs in less than 60% of the time required by standard Newton with either time-step-
Table 4
Summary of runs for the full SPE 10 problem

Standard Reduced

Short Dt Long Dt Short Dt Long Dt Huge Dt

No. of time steps 58 38 53 26 11
No. of time step cuts 6 17 0 0 0
No. of Newton steps 353 516 128 90 55

Wasted Newton steps 120 340 0 0 0
No. of linear solves 3818 6257 2271 2399 1805

Wasted linear solves 860 3934 0 0 0
Total running time (s) 24,053 37,388 16,558 14,727 10,275

Linear solves (s) 22,570 35,457 11,697 11,301 7899
Single-cell solves (s) 0 0 4194 2996 2132

‘‘Wasted Newton steps’’ and ‘‘wasted linear solves’’ indicate the number of Newton iterations and linear solves that are wasted due to time
step cuts.
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ping strategy. Finally, Fig. 7 shows the oil production rate and water cut for all four simulation runs. Except
for the huge time step case, the discrepancy between the solutions is insignificant. Thus, by using reduced New-
ton with larger time steps, we obtain substantial speedups with little or no change in solution accuracy.

6.4. 1D three-phase example with gravity

To show that the reduced formulation is applicable to three-phase flow, the algorithm is tested on a three-
phase model, in which gas is injected into a reservoir initially containing a mixture of 50% oil and 50% water in
every cell. This saturation is chosen to ensure that all phases are mobile, and that we have a truly three-phase
Table 5
PVT relations for all three-phase examples

P (psi) Bo (RB/STB) lo (cp) Bw (RB/STB) lw (cp) Bg (RB/SCF) lg (cp)

14.7 1.062 2.200 1.0410 0.31 0.166666 0.0080
264.7 1.061 2.850 1.0430 0.31 0.012093 0.0096
514.7 1.060 2.970 1.0395 0.31 0.006274 0.0112

1014.7 1.059 2.990 1.0380 0.31 0.003197 0.0140
2014.7 1.056 2.992 1.0350 0.31 0.001614 0.0189
2514.7 1.054 2.994 1.0335 0.31 0.001294 0.0208
3014.7 1.053 2.996 1.0320 0.31 0.001080 0.0228
4014.7 1.050 2.998 1.0290 0.31 0.000811 0.0268
5014.7 1.047 3.000 1.0258 0.31 0.000649 0.0309
9014.7 1.033 3.008 1.0130 0.31 0.000386 0.0470

Table 6
Relative permeabilities for all three-phase examples

Sw krw krow

0.12 0 1.00
0.121 1.67E � 12 1.00
0.14 2.67E � 07 0.997
0.17 1.04E � 05 0.98
0.24 3.46E � 04 0.7
0.32 2.67E � 03 0.35
0.37 6.51E � 03 0.2
0.42 0.014 0.09
0.52 0.043 0.021
0.57 0.068 0.01
0.62 0.104 0.001
0.72 0.216 0.0001
0.82 0.400 0
1.00 1.000 0

Sg krg krog

0 0 1.00
0.001 0.0002 1.00
0.02 0.0033 0.997
0.05 0.0106 0.98
0.12 0.0364 0.70
0.20 0.0919 0.35
0.25 0.1459 0.20
0.30 0.2226 0.09
0.40 0.4588 0.021
0.45 0.6336 0.01
0.50 0.7449 0.001
0.60 0.8887 0.0001
0.70 0.9563 0
0.88 1.0000 0
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problem. The reservoir is identical to the one used in Example 6.1. PVT data and relative permeabilities are
shown in Tables 5 and 6, respectively. The gas component is assumed not to dissolve into the oil phase, (i.e.
Rgo = 0). The oil relative permeability is interpolated from the oil–gas and oil–water tables using the Stone I
method. Gas is injected into the top layer at a rate of 100 MSCF/day (0.000768 pore volumes/day at 4000 psi),
and a producer in the bottom layer is maintained at a constant pressure of 4000 psi. The production curve is
shown in Fig. 8. Even though gas is highly mobile (lw/lg = 11.6, lo/lg = 111.9), breakthrough occurs rela-
tively late (at T = 521 days or 0.4 pore volumes) because gas preferentially stays in the upper layers due to
buoyancy. In addition, since the simulation does not start from gravity equilibrium, gravity segregation
between oil and water must occur at the initial stages of the simulation. Up to 98% of cell interfaces experience
countercurrent flow at some point before gas breakthrough. This accounts for the rather complicated behavior
of the water and oil production curves prior to gas breakthrough. Even though this is a rather small example,
we believe it captures the essence of the types of nonlinearity present in countercurrent three-phase flow, and
that it provides a good test case for comparing the convergence behavior of the standard and reduced Newton
algorithms. In this example, two time-stepping strategies are used:

� Short time steps: T = 0.1,1,5,10 days. After 10 days, Dt = 10 days (0.00768 pore volumes) until T = 1000
days.
� Long time steps: After an initial time step of 0.1 days, Dt is automatically chosen based on saturation and

pressure changes, with a minimum of Dt = 10 days and gradually increasing until Dt = 100 days (0.0768
pore volumes).

Table 7 summarizes the runs for the standard and potential-based reduced Newton algorithms. (Running
times have little meaning due to the small size of the problem, and are thus omitted.) We once again observe
that reduced Newton has no problems handling both short and long time steps, whereas standard Newton
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Fig. 8. Production curve for the 1D three-phase example. The units are STB/day for oil and water, and MSCF/day for gas.

Table 7
Summary of runs for 1D three-phase example with gravity

Standard Reduced

Short Dt Long Dt Short Dt Long Dt

Number of time steps 111 74 103 26
Number of time step cuts 16 36 0 0
Number of Newton steps 888 1223 480 229

Wasted Newton steps 320 720 0 0
Number of linear solves 1763 2421 973 480

Wasted linear solves 641 1418 0 0

‘‘Wasted Newton steps’’ and ‘‘wasted linear solves’’ indicate the number of Newton iterations and linear solves that are wasted due to time
step cuts.
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needs to cut a significant amount of time steps in both cases to achieve convergence. Thus, the presence of
three phases does not negatively impact the convergence behavior of reduced Newton.

6.5. 2D Heterogeneous three-phase example

We now test the reduced Newton algorithm on a three-phase example with heterogeneity. The reservoir
consists of the 51st layer of the SPE 10 problem, which is a slice in the Upper Ness formation (see Example
6.3). Initially the reservoir contains a mixture of 50% oil and 50% water, and gas is injected through a well in
the center at a rate of 1000 MSCF/day (0.00005 pore volumes per day). The four production wells (one in each
corner) are each maintained at a bottom hole pressure of 4000 psi. The PVT and relative permeability data are
the same as in Example 6.4 and are given in Tables 5 and 6. The simulation is run up to T = 500 days
(0.025 PVI), which is much larger than the breakthrough time (TBT � 40 days or 0.002 PVI). Note that the
early breakthrough time is due to the extremely high mobility of the gas. Fig. 9 shows the gas saturation
of the reservoir at T = 500 days. Two time-stepping strategies are used:

� Short time steps: T = 1, 3, 7, 15, 31, 63, 100 days. After 100 days, Dt = 50 days (0.00125 pore volumes) until
T = 500 days is reached.
� Long time steps: T = 10, 30, 60, 100 days. After 100 days, Dt = 100 days (0.0025 pore volumes) until

T = 500 days is reached.

Table 8 shows the performance of the standard and reduced Newton algorithms. Once again no time step
cuts are required by reduced Newton, demonstrating its stability compared with the standard Newton’s
method. This translates to an improvement in running time for the long time step case. This example shows
that the improvement obtained from reduced Newton in three-phase flow is not limited to simple 1D cases.
Fig. 9. Gas saturation at T = 500 days in the 2D heterogeneous three-phase example. Dark blue indicates 100% gas, whereas dark red
indicates a cell consisting purely of liquid phases.

Table 8
Summary of runs for 2D heterogeneous three-phase example

Standard Reduced

Short Dt Long Dt Short Dt Long Dt

Number of time steps 16 10 15 8
Number of time step cuts 1 3 0 0
Number of Newton steps 74 101 58 40

Wasted Newton steps 20 60 0 0
Number of linear solves 1264 1529 1172 881

Wasted linear solves 276 698 0 0
Total running time (s) 63.5 75.6 73.8 53.9

Linear solves (s) 53.7 66.1 50.5 37.9
Single-cell solves (s) 0 0 18.6 13.0

‘‘Wasted Newton steps’’ and ‘‘wasted linear solves’’ indicate the number of Newton iterations and linear solves that are wasted due to time
step cuts.



Table 9
Summary of runs for 3D three-phase example

Standard Reduced

Short Dt Long Dt Short Dt Long Dt

Number of time steps 18 11 17 9
Number of time step cuts 1 3 0 0
Number of Newton steps 95 117 74 57

Wasted Newton steps 20 60 0 0
Number of linear solves 1083 1624 974 838

Wasted linear solves 178 855 0 0
Total running time (s) 4.9 6.5 6.1 4.9

Linear solves (s) 3.7 5.5 3.4 2.9
Single-cell solves (s) 0 0 2.1 1.6

‘‘Wasted Newton steps’’ and ‘‘wasted linear solves’’ indicate the number of Newton iterations and linear solves that are wasted due to time
step cuts.
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Fig. 10. Reservoir description for the 3D three-phase example.
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6.6. 3D three-phase example

Finally, the algorithm is tested on a 3D three-phase model, in which gas is injected into a reservoir contain-
ing a mixture of 50% oil and 50% water. The reservoir (20 · 20 · 3 cells) is a 2 · 2 areal refinement of the one
used in the SPE1 test set [10] and is shown in Fig. 10. The PVT data and relative permeabilities are the same as
the two previous examples (Tables 5 and 6), and the Stone I model is used to interpolate the oil–gas and oil–
water data. The gas-injection well is completed in cell (1, 1, 1) and operates at 100,000 MSCF/day (0.000073
pore volumes per day at 9000 psi); a production well, completed in cell (20, 20, 3), operates at a bottom-hole
pressure of 1000 psi. The simulation is run up to T = 5000 days (0.365 PVI). Again because of the high gas
mobility, breakthrough occurs very early (TBT � 100 days or 0.0073 PVI). Since the oil and water are not
in gravity equilibrium at the start of the simulation, there is significant countercurrent flow in the problem.
Two time-stepping strategies are used:

� Short time steps: T = 30, 100, 200, 250, 400, 600, 900 days. After 900 days, Dt = 400 days (0.0292 pore vol-
umes) until T = 5000 days.
� Long time steps: T = 100, 250, 600 days. After 600 days, Dt = 800 days (0.0584 pore volumes) until

T = 5000 days.

Table 9 shows the performance of the standard and reduced Newton algorithms. Again we see that the
reduced Newton method requires no time step cuts and fewer iterations to converge when compared to the
standard Newton method.
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7. Conclusions

We proposed a potential-based ordering scheme for nonlinear systems of algebraic equations that arise
from a fully-implicit finite volume discretization of the standard black oil model. This ordering generalizes
the Cascade ordering by Appleyard and Cheshire [1] to handle countercurrent flow due to gravity and/or cap-
illarity, and is applicable to both two and three-phase flow. For a given pressure field, this ordering allows us
to solve for the saturations of each gridblock by solving (np � 1)N single-cell scalar equations in one variable,
where np is the number of phases and N is the number of gridblocks.

Based on this ordering, we developed a reduced-order Newton method by implicitly defining saturation
as a function of pressure. The reduced problem is then solved using Newton’s method. Thus, this method
can be regarded as a nonlinear analog of a Schur complement reduction. Solving the reduced Jacobian sys-
tem is cheaper than solving the full problem, since the dimension of the residual space is now N rather than
npN. Moreover, numerical evidence showed that the potential-based reduced Newton solver was able to
converge for time steps that were much larger than what the standard Newton’s method could handle.
In addition, whenever standard Newton converged, the reduced Newton algorithm also converged, and
usually in fewer iterations than standard Newton. This led to a significant improvement in overall solution
time, especially on large heterogeneous problems such as SPE 10 [5]. We are currently investigating ways to
take advantage of the potential ordering in the linear solution step. Moreover, we are working on hybrid-
izing the potential-based Reduced Newton algorithm with standard Newton for general black oil and
compositional problems.

We acknowledge the support of this research by the SUPRI-B reservoir simulation affiliates program, at
Stanford University.
Appendix A. Invertibility of Jss

Proposition 1. Let the relative permeability functions krw and kro be such that dkrw/dSw P 0, okro/oSo P 0. Then

Jss = oFs/oS is non-singular.

Proof. Since Jss is a lower triangular matrix, it suffices to show that none of its diagonal entries are zero. A
typical oil conservation equation for cell i is
F oi ¼
/SoiboðpiÞ

Dt
þ

X
l adjacent to i

KilHo;ilðUoi � UolÞ þ F cap ðA:1Þ
where
H o;il ¼
kroðSiÞboðpiÞ=loðpiÞ if Uoi P Uol;

kroðSlÞboðplÞ=loðplÞ if Uoi < Uol;

�

and Fcap denotes capillary forces that are independent of So. Hence
oF oi

oSoi
¼ /boðpiÞ

Dt
þ Kil

oH o;il

oSoi

ðUoi � UolÞ: ðA:2Þ
The accumulation term /bw(pi)/Dt will always be positive. The sign of the flux term depends on the upstream
direction. If Uoi P Uol, then
oHo;il

oSoi
¼ boðpiÞ

loðpiÞ
okro

oSo

ðSoiÞP 0
by assumption. On the other hand, if Uoi < Uol, then Ho,il is independent of Soi, so the derivative is zero. Thus,
the flux derivative will always be non-negative, which means oFoi/oSoi > 0 for all cells i. The argument for the
water equations is similar. Thus, Jss has positive diagonal, so it is invertible. h
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Appendix B. Monotonicity of Stone’s Models

Under certain mild conditions (to be specified below), the Stone I and II models (cf. [2]) can be shown to
satisfy o kro/oSo P 0, as required by Proposition 1. Note that we are only concerned with saturations inside
the region
D ¼ fðSw; So; SgÞjSw P Swc; So P Som; Sg P 0; Sw þ So þ Sg ¼ 1g;

where Swc is the connate water saturation and Som is the minimum oil saturation at which oil is simultaneously
displaced by water and gas. Also note that the derivative okro/oSo is taken along the line Sw = constant, so by
the relation Sw + So + Sg = 1, the criterion okro/oSo P 0 is equivalent to okro/oSg 6 0, which turns out to be
more natural to show.

Proposition 2. Assume dkrog/dSg 6 0. Then for saturations in D, the Stone I model satisfies okro/oSg 6 0 provided

oSom=oSg P � 1
2.

Proof. The Stone I model is defined as
kroðSw; SgÞ ¼ krocwS�obwbg;
where
bw ¼
krowðSwÞ=krocw

1� S�w
; bg ¼

krogðSgÞ=krocw

1� S�g
;

krocw = krow(Sw = Swc), and the normalized saturations are defined as
S�w ¼
Sw � Swc

1� Swc � Som

; S�o ¼
So � Som

1� Swc � Som

; S�g ¼
Sg

1� Swc � Som

:

Combining all these relations, we see that kro = U(Sw, Sg, Som)/V(Sw, Sg, Som), where
U ¼ ð1� Sw � Som � SgÞð1� Swc � SomÞkrowðSwÞkrogðSgÞ;
V ¼ ð1� Swc � Som � SgÞð1� Sw � SomÞ:
Remembering that Som = Som(Sw, Sg), we deduce that
okro

oSg

¼ 1

V 2
V

oU
oSg

� U
oV
oSg

� �
þ oSom

oSg

V
oU

oSom

� U
oV

oSom

� �� �
¼ 1

V 2
R1 þ R2 �

oSom

oSg

� �
;

so the sign of okro/oSg is determined by the quantity within the square brackets. After some manipulation, we
get
R1 ¼ �ðSw � SwcÞð1� Swc � SomÞð1� Sw � SomÞkrowkrog þ ð1� Swc � Som � SgÞð1� Sw � SomÞ
� ð1� Swc � SomÞ � ð1� Sw � Som � SgÞkrowk0rog

6 �ðSw � SwcÞð1� Swc � SomÞð1� Sw � SomÞkrowkrog 6 0;
since k0org 6 0. In addition, we get
R2 ¼ �SgðSw � SwcÞ½ð1� Sw � Som � SgÞ þ ð1� Swc � SomÞ�krowkrog 6 0:
Hence R1 þ R2 � oSom

oSg
6 0 if either oSom/oSg P 0 or
oSom

oSg

����
���� 6 ðSw � SwcÞð1� Swc � SomÞð1� Sw � SomÞ

SgðSw � SwcÞ½ð1� Sw � Som � SgÞ þ ð1� Swc � SomÞ�
: ðB:1Þ
But since Sg 6 1 � Sw � Som and 1 � Sw � Som � Sg 6 1 � Swc � Som, we see that
ðSw � SwcÞð1� Swc � SomÞð1� Sw � SomÞ
SgðSw � SwcÞ½ð1� Sw � Som � SgÞ þ ð1� Swc � SomÞ�

P
1

2
:
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Thus, in order to ensure that okro/oSg 6 0, it is sufficient to require either oSom/oSg P 0 or joSom=oSgj 6 1
2
,

which is equivalent to requiring oSom=oSg P � 1
2
. h

Note that if the Fayers and Matthews [8] model for Som is used, we would have
oSom

oSg

¼ � Sorw � Sorg

1� Swc � Sorg

;

so the condition in Proposition 2 would be satisfied as long as Sorw � Sorg is small, which is usually the case. In
particular, the monotonicity condition is always satisfied whenever Sorw = Sorg.

Proposition 3. Assume that dkrg/dSg P 0, dkrog/dSg 6 0, and that krw and krow are convex functions of Sw. Then

for all saturations in D, the Stone II model satisfies okro/oSg 6 0.

Proof. The Stone II model is defined as
kroðSw; SgÞ ¼ krocw
krow

krocw

þ krw

� �
krog

krocw

þ krg

� �
� krw þ krg

� 	� �
:

Differentiating with respect to Sg gives
okro

oSg

¼ krow

krocw

þ krw � 1

� �
k0rg þ

krow

krocw

þ krw

� �
k0rog

krocw

:

The second term is clearly non-positive because k0rog 6 0. To show that the first term is also non-positive, first
note that k0rg P 0. Next, define g(Sw) = krw + krow/krocw. Then g(Swc) = g(1 � Sorw) = 1. But since g is convex,
it must be that g(Sw) 6 1 for all Swc 6 Sw 6 1 � Sorw. So g(Sw) � 1 6 0, which implies the first term is non-
positive as well. Hence, we have shown that okro/oSg 6 0, as required. h
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